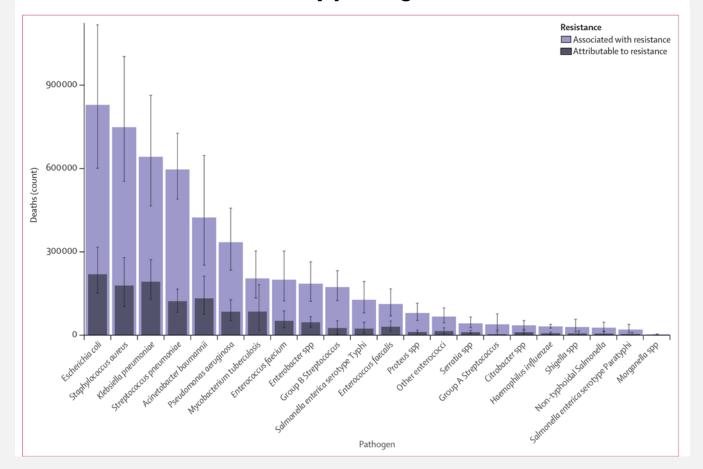
The role of vaccines in reducing AMR

Dr. Mateusz Hasso-Agopsowicz

Technical Officer, Department of Immunization, Vaccines & Biologicals, World Health Organization

ARVAC, Online Vaccinology Course



The burden of AMR

- AMR is a global health threat with 1.27 million deaths attributable to bacterial AMR and 4.95 million deaths associated with bacterial AMR worldwide in 2019;
- Attributable: deaths are the result of a progression from a drug sensitive to a drug resistant infection;
- Associated: deaths are the result of a progression from no infection to a drug resistant infection;
- The six leading pathogens for deaths associated with resistance were responsible for 929,000 (660,000–1,270,000) deaths attributable to AMR and 3.57 million (2.62– 4.78) deaths associated with AMR in 2019.

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext

The number of deaths associated and attributable to resistance by pathogen, in 2019

The 'Vaccines and AMR' Paradigm

A world where lives are not lost because of AMR

MECHANISMS TO INCREASE AMR

Overuse and misuse of antibiotics

High transmission of pathogens

INTERVENTIONS

Vaccines offer multiple mechanisms for impact

WHAT ARE THE GAPS?

- Vaccines not optimally implemented
- Vaccines are not available
 -to reduce resistant pathogens and infections

The 'Vaccines and AMR' Paradigm

IMPACT

A world where lives are not lost because of AMR

MECHANISMS TO INCREASE AMR

Overuse and misuse of antibiotics

High transmission of pathogens

INTERVENTIONS

Vaccines offer multiple mechanisms for impact

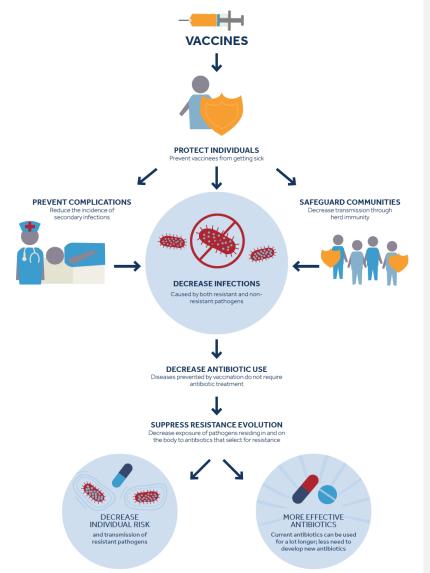
WHAT ARE THE GAPS?

- Vaccines not optimally implemented
- Vaccines are not available
 -to reduce resistant pathogens and infections

How do vaccines reduce AMR?

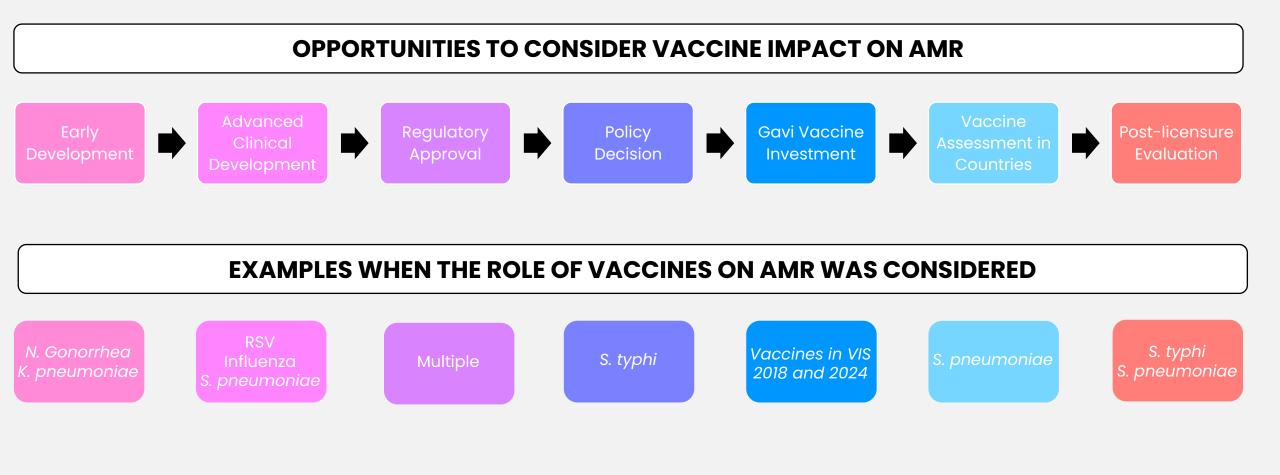
Vaccines prevent infections with drugsusceptible and resistant pathogens

Vaccines prevent individuals and communities from getting sick



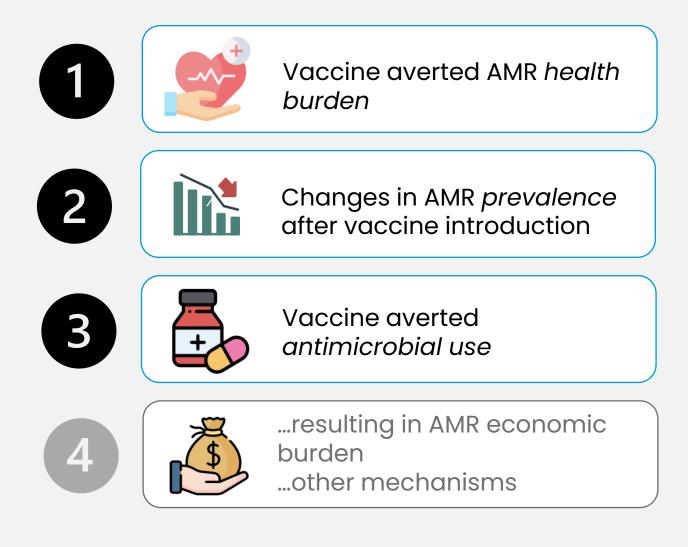
Decrease antibiotic use (causal chain)

Suppress resistance evolution and decrease transmission of resistant pathogens (causal chain)


5

Leveraging Vaccines to Reudce Antibiotic Use and Prevent AMR: An Action Framework

https://www.who.int/publications/m/item/leveraging-vaccines-to-reduceantibiotic-use-and-prevent-antimicrobial-resistance


WHEN to evaluate the role of vaccines in reducing AMR?

HOW to evaluate the role of vaccines in reducing AMR? *Multiple mechanisms for impact*

1	Vaccine averted AMR health burden
2	Changes in AMR <i>prevalence</i> after vaccine introduction
3	Vaccine averted antimicrobial use
4	resulting in AMR economic burden other mechanisms

HOW to evaluate the role of vaccines in reducing AMR? *Multiple mechanisms for impact*

Stories from the field: the impact of vaccines on AMR *health burden*, in Zimbabwe

CHALLENGE

Outbreaks of highly resistant typhoid and cholera between 2017-2019 in Harare, Zimbabwe

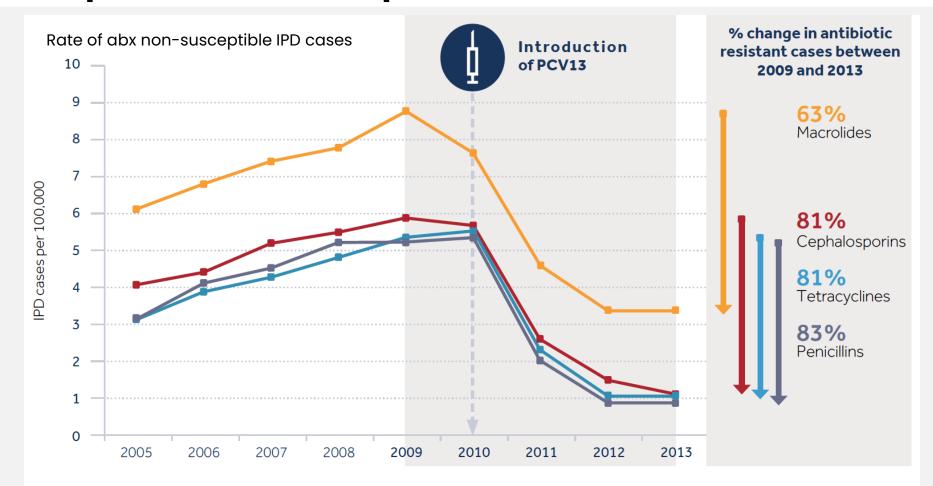
ACTION

Administration of 318,000 doses of typhoid and 1.5 million doses of cholera vaccines through campaigns

IMPACT

Successful control of outbreaks Introduction of TCV in routine immunization

FUTURE DIRECTIONS


Strengthening routine immunization and WASH interventions to prevent future outbreaks

Photos credit: WHO/Kudzai Tinago

Impact of pneumococcal vaccine on *prevalence* of non-susceptible invasive pneumococcal disease, USA

IPD: invasive pneumococcal disease; PCV: pneumococcal conjugate vaccine.

- ^a Jansen KU, Knirsch C, Anderson AS. The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med. 2018;24(1):10-9.
- ^b Tomczyk S, Lynfield R, Schaffner W, Reingold A, Miller L, Petit S, et al. Prevention of Antibiotic-Nonsusceptible Invasive Pneumococcal Disease with the 13-Valent Pneumococcal Conjugate Vaccine. Clin Infect Dis. 2016; 62(9).

Impact of PCV on S. pneumo non-susceptibility

559 global studies on over 310,000 pediatric isolates

11.5% decrease in isolates that are non-susceptible to penicillin

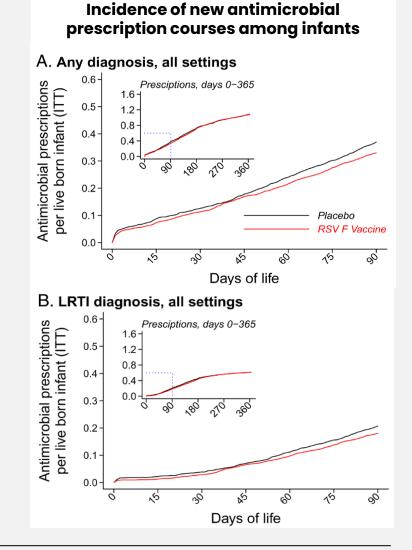
7.5-9.7% decrease of isolates non-susceptible to other antibiotics

Over 10-year period after PCV introduction

A Invasive isolates to per	nicillin		A Invasive isolates to made	rolide
 pre-PCV introduction ≥3 years post-PCV introduction 		Studie (n)	 Pre-PCV introduction ≥3 years post-PCV introduction 	Stud (n)
Southern Latin America	+	8	Southern Latin America	2
Western Europe	-	1 24	Western Europe	1 14
High-income North America		6 15	High-income North America	
Australasia	• •	13 10	Australasia	8
High-income Asia Pacific	•• _•	3 10	High-income Asia Pacific	• 3 3 3 3
High income	•	3	3	• 2
nigh income	-	22	High income	- 22 15
Caribbean	•	2	Caribbean	2
Central Latin America		5	Central Latin America	0 3
Tropical Latin America		1 9	Tropical Latin America	• 1 • 5
Andean Latin America	-	0 2	Andean Latin America	1 2
Latin America and Caribbean	_ _	0 14 1	Latin America and Caribbean	0 10 1
Southern sub-Saharan Africa		4	Southern sub-Saharan Africa	
Western sub-Saharan Africa		0 5	Western sub-Saharan Africa	- 2
Central sub-Saharan Africa		0	Central sub-Saharan Africa	0
Eastern sub-Saharan Africa	-	0		0
Sub-Saharan Africa		0 18	Eastern sub-Saharan Africa	0
500 Summar Annea		3	Sub-Saharan Africa	9 2
North Africa and Middle East		13 4	North Africa and Middle East	6
South Asia		12	South Asia	6 0
East Asia		0 29		
Southeast Asia		0	East Asia	- • 19 0
Oceania		0	Southeast Asia	• 5 0
		ō	Oceania	1
Southeast Asia, east Asia, and Oceania		36 0	Southeast Asia, east Asia, and Oceania	- 24 0
Eastern Europe		0	Eastern Europe	0
Central Europe		2	Central Europe	0 2
Central and Eastern Europe		1 2	Central and Eastern Europe	
	0 25 50 75 10	1		1
	Proportion non-susceptible	0	ó	2'5 5'0 7'5 1'00 Proportion non-susceptible
	to penicillin (%)			to macrolides (%)

Maternal RSV vaccine impact on antimicrobial prescribing

Novavax vaccine trial conducted in 11 countries



Reduced antimicrobial prescriptions for 'any diagnosis' in infants born to mothers who received the RSV vaccine Vaccine efficacy = 12.9%

Reduced antimicrobial prescriptions for 'acute lower respiratory tract infections' Vaccine efficacy= 16.9%

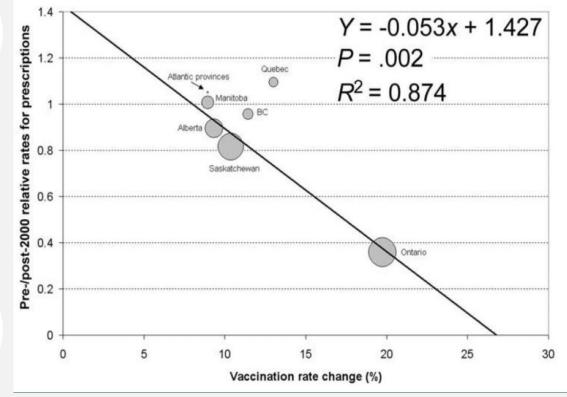
Over the first three months of infant's life

https://www.pnas.org/doi/10.1073/pnas.2112410119

Seasonal influenza vaccine impact on antimicrobial prescribing

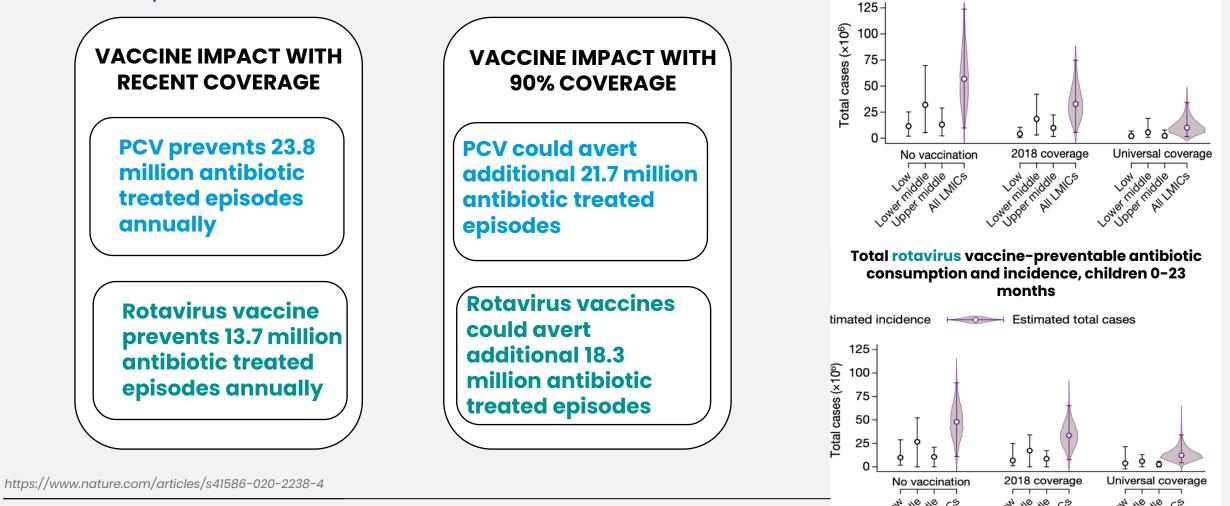
Ecologic observational study, Canada (1997-2007)

Introduction of free seasonal influenza vaccine for those >6 mo, in 2000 (Ontario, Canada)



64% greater reduction in respiratory antibiotic prescriptions after universal vaccine introduction than status quo use

Reductions of secondary bacterial infections like pneumonia and otitis media

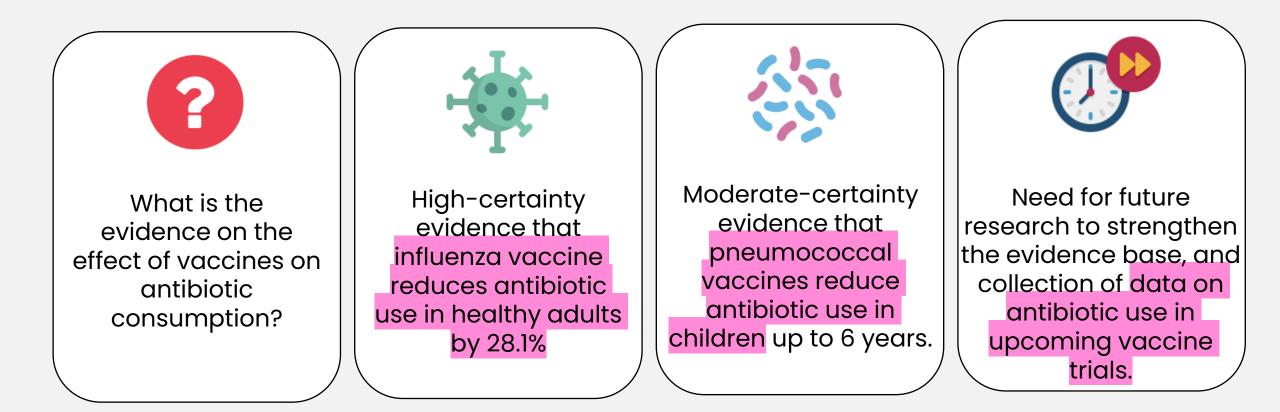

Association between influenza vaccination rate and rates of antibiotic prescription. Ontario. Canada

https://academic.oup.com/cid/article/49/5/750/308812

PCV and rotavirus vaccines reduce antibiotic use in children in LMICs

Analysis of Demographic Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS)

Total PCV10/13 vaccine-preventable antibiotic


consumption and incidence, children 24-59

months

The role of vaccines in reducing AMR

Impact of influenza and pneumococcal vaccines on *antimicrobial use*

Systematic review and meta-analysis

https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(19)30381-7/fulltext

The 'Vaccines and AMR' Paradigm

IMPACT

A world where lives are not lost because of AMR

MECHANISMS TO INCREASE AMR

Overuse and misuse of antibiotics

High transmission of pathogens

INTERVENTIONS

Vaccines offer multiple mechanisms for impact

WHAT ARE THE GAPS?

- Vaccines not optimally implemented
- Vaccines are not available
 -to reduce resistant pathogens and infections

Vaccines are underecognised as tools in preventing AMR

- Important opinion-building articles do not mention vaccines at all;
- Immunization and AMR scientists/advocates need to ensure that vaccines are recognized and used as interventions to reduce AMR.

*https://globalizationandhealth.biomedcentral.com/articles/10.1186/s12992-022-00878-

EUROPEAN MEDICINES AGENCY ENCE MEDICINES

CONF

CHAPTER 1 - KEY ACHIEVEMENTS IN 2019

Quick navigation

ANTIMICROBIAL RESISTANCE

Antimicrobial resistance (AMR) is an increasingly grious public health threat. It threatens the effective treatment of a ver-increasing range of infections caused by bacteria and cover microorganisms.

EDITORIAL

The post-antibiotic era is here

py is considered too dangerous because there are no rugs to prevent or treat bacterial infections. Unless develop new antibiotics and therapeu s, the decimation of modern medicine will soon er incentives for research and develop to avoid this scenario. Yet, the rise o

ce (AMR) on an upstaging by COVID-19. Health red prepandemic AMR work ting severe acute reme coronavirus 2 (SARS-CoV-2) transivoted toward SARS-CoV-2 re

rch. This "all hands on deck onse was prudent but likely "...drug-resistan ffected the already lagging gress on battling AMR. What nfections cou bout efforts before COVID-19? experts note annually, kill hat drug-resistant infections uld, annually, kill 10 millio 10 million peo eople worldwide by 2050, and 2030. AMR could force up to worldwide by 205 ty Reports from the United

immunity against AMR, and microbiota-based therapies. To better track AMR, next-generation diagnostics are needed that use whole-genome and metar sequencing and molecular techniques to detect AMR ans, animals, and the environment Prior to 2020, the United States started paying attention to market-place incentives that would rekindle private ment. In 2013, the US Centers for Disease Control and Prevention (CDC) released its first Antibiotics Resis Plan for Combating Antibiotic-Resistant Bacteria in 2015. Fortunately, last October, the strategy was renewed for t years, directing federal agencies to spur new drug devel

ering Antimicrobial Subscription End Upsurging Res (PASTEUR) Act was reintro ed in Congress last month. he bipartisan bill passes, it will apport a funding model that is t linked to sales, among othe mic incentives. Although White House's fiscal year 8022 budget plan leaves gaps in es to address AMR, in ases in health security budgets ould be directed at incentivizing rug development. Given that he CDC's 2019 Antibiotic Resis

Opinion | The shadow pandemic:

The Washington Post

wp + Follow

University School of Medicine, St. Louis, MO, USA. j.kwon@

wustl.edu Villiam G Powderly is a professor i the Division of in the Departmen of Medicine at the Washingto University School of Medicine St Louis, MO, USA wpowderly@ wustl.edu

Jennie H. Kwo

is an assistant

the Division o

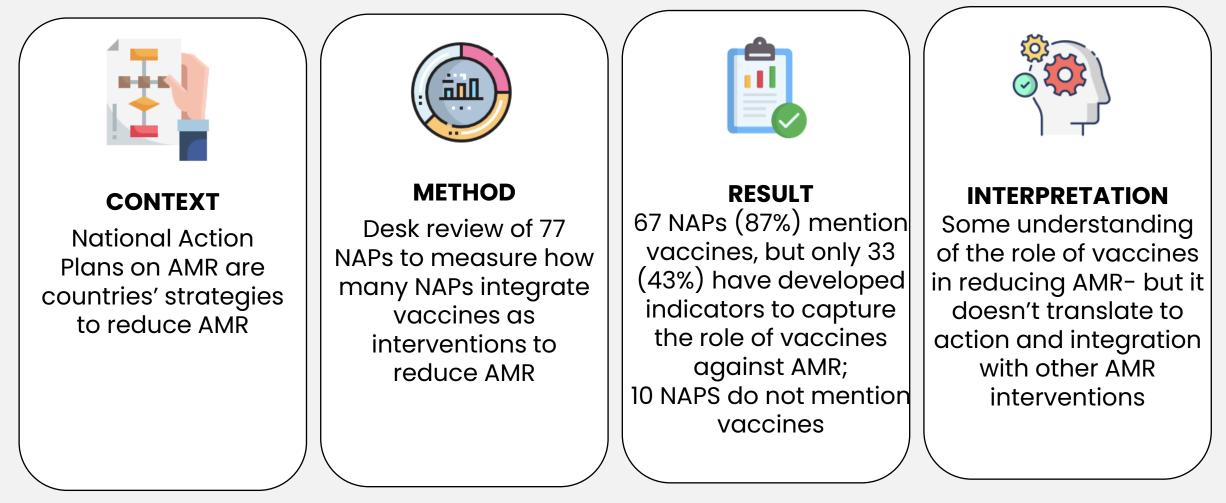
Infectious Disea

of Medicine at

the Washingto

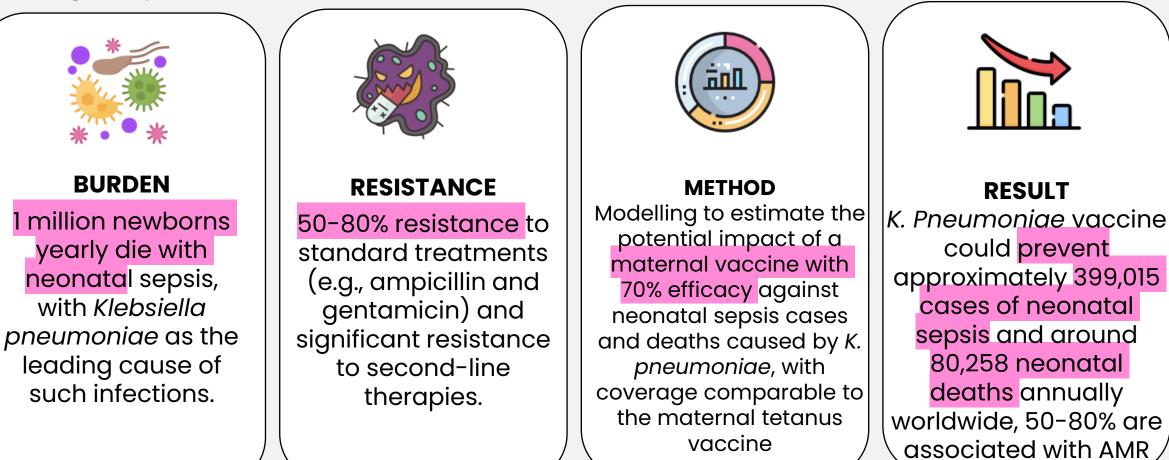
in the Department

professor in


Antibiotic resistance is growing

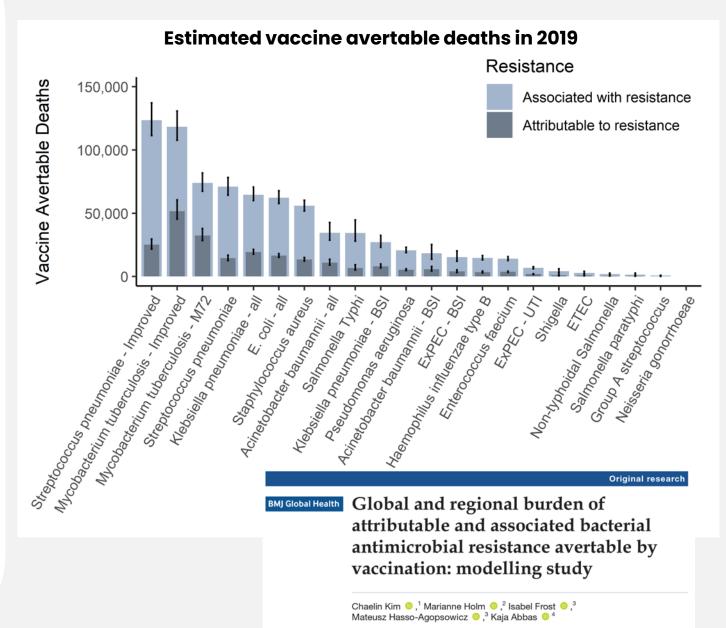
By the Editorial Board January 28, 2022 at 2:07 p.m. EST

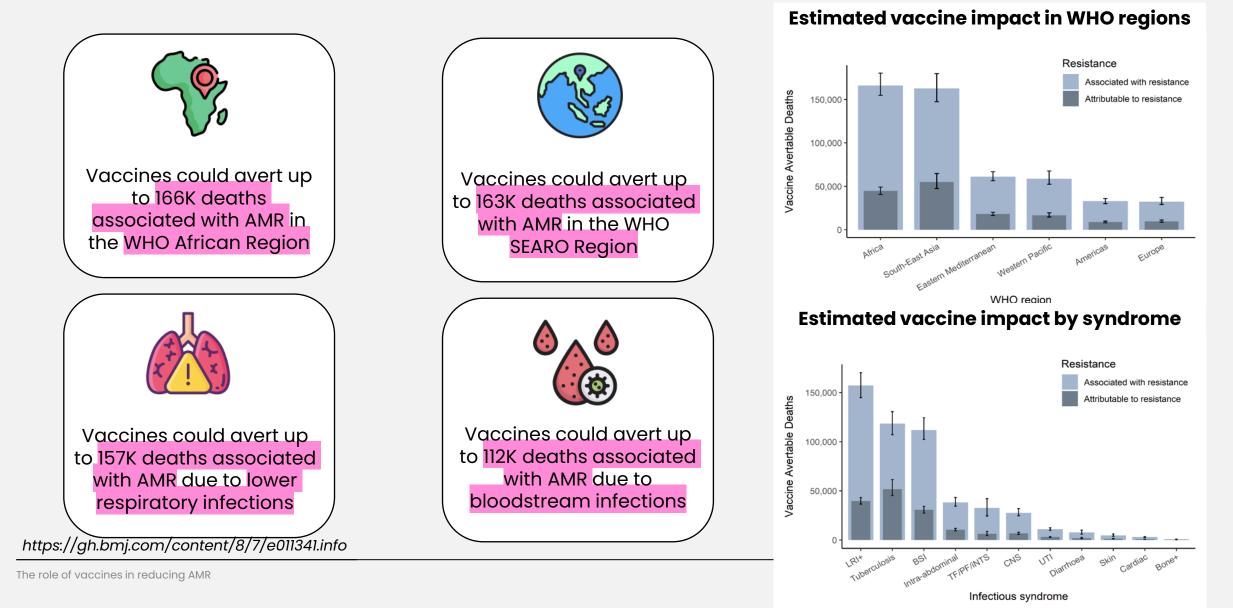
Vaccines in National Action Plans Against AMR


Desk review of National Action Plans

https://globalizationandhealth.biomedcentral.com/articles/10.1186/s12992-022-00878-6

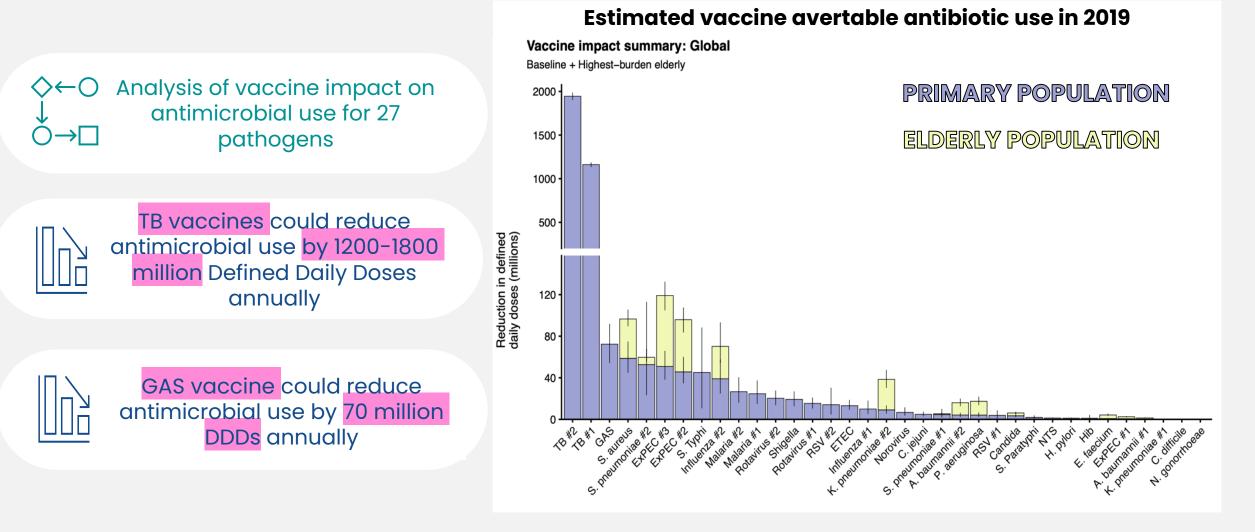
Vaccines against *Klebsiella pneumoniae* need to be developed to reduce AMR


Modelling analysis of CHAMPs, BARNARDS, and NeoObs studies


New vaccines to avert AMR health burden

- Static model to estimate impact of vaccines for 15 pathogens on AMR using IHME data, vaccine direct effect
- Mycobacterium tuberculosis: 118,250
 (107,668 130,801) deaths associated with resistance averted by a WHO vaccine with an 80% efficacy given to neonates, with life long protection or boosting.
- Other vaccines with over 50K averted deaths: Mtb (M72), Streptococcus pneumoniae (improved), Klebsiella pneumoniae, E. Coli, S. aureus

https://gh.bmj.com/content/8/7/e011341.info



Estimated vaccine averted health burden by syndrome and WHO region

New vaccine impact: Estimates of averted antimicrobial use

LSHTM and WHO modelling analyses- unpublished

Gavi VIS 2024: Evaluation framework for routine use vaccines

Ranking Criteria

Modulating Criteria

Criteria	Indicators	Criteria	Indicators	
	Total future deaths averted 2026-2040, and per	Modulate up		
Health impact	100,000 vaccinated	Global health security impact	Enidemic potential of disease	
	Total future DALYs averted 2026-2040, and per		Impact on AMR	
	100,000 vaccinated		Climate change risks and mitigation	
	Vaccine Procurement cost per death averted	Other impact	Total U5 deaths averted 2026-2040, and per 100,000 vaccinated	
Value for money	Vaccine Procurement cost per DALY averted	Contribution to	Fit with global development (SDGs), immunization (IA2030)	
		global agenda	agendas and other relevant global targets	
	Disproportionate impact of disease on vulnerable	Broader health	No specific indicator – evaluated case-by-case	
	groups	system benefits	The specific indicator – evaluated case-by-case	
Equity and social	Vaccination contributes to addressing underlying gender-related barriers faced by caregivers,	Contextual		
protection impact			Ease of supply chain integration	
	adolescents and health workers and/or gender		Need for healthcare worker training/ behaviour change	
	associated differences in immunisation coverage	Implementation	Requirements of vaccination timepoint	
	Degree of vaccine market challenges	feasibility	Need for demand promotion (e.g., acceptability,	
		reasibility	understanding of disease burden)	
	Gavi role in addressing challenges		Availability of epidemiological data to inform programmes	
Economic impact	Direct medical cost averted		Diagnostics availability/ needs	
	Indirect cost averted	Alternate	Optimal use of current and future alternative interventions	
		interventions	(prevention and treatment)	

The Vaccine Allia

How are vaccines integrated into global AMR strategies?

GLOBAL ACTION PLAN

ON ANTIMICROBIAL RESISTANCE

World Health Organization

https://www.who.int/publications/i/item/9789241509763

https://www.who.int/publications/i/item/9789240082496

World Health Organization

People-centred approach to addressing antimicrobial resistance in human health:

WHO core package of interventions to support national action plans

World Health Organization

Global research agenda for antimicrobial resistance in human health

Policy brief

June 2023

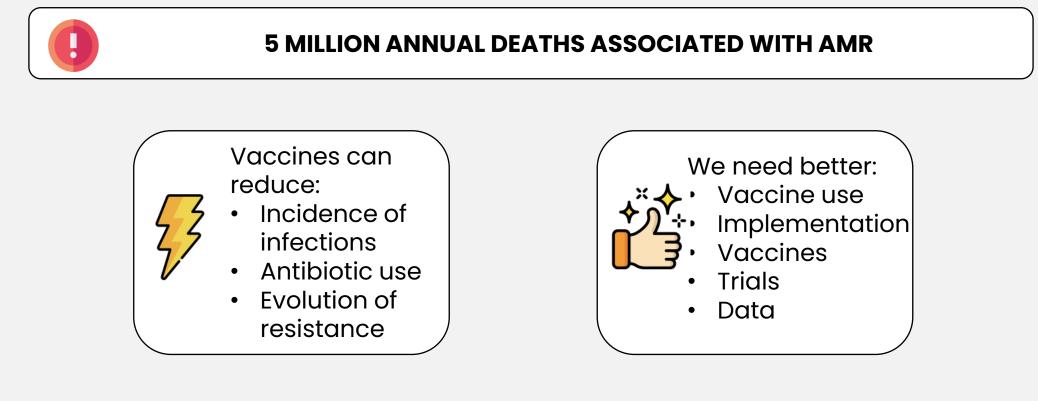
https://www.who.int/publications/m/item/globalresearch-agenda-for-antimicrobial-resistance-inhuman-health

The role of vaccines in reducing AMR

The Action Framework to leverage vaccines against AMR and AMU

Expanding use of licensed vaccines to maximize impact on AMR

Develop new vaccines that contribute to prevention and control of AMR


Expanding and sharing knowledge of vaccine impact on AMR

https://www.who.int/publications/m/item/leveraging-vaccines-to-reduceantibiotic-use-and-prevent-antimicrobial-resistance Leveraging Vaccines to Reduce Antibiotic Use and Prevent Antimicrobial Resistance:

An Action Framework

Leadership and Advocacy to Drive Action

Opportunity for change:

