CEPI

New clinical / regulatory framework: Acceleration of vaccine licensure

ARVAC, 5th and 12th June 2024

Jakob Cramer Director Clinical Development, CEPI

Sensitivity: Privileged and confidentia

The 100-day Mission Requires A Paradigm Shift

Vaccine development timeline

Pathway towards 100 Days Mission

→ Paradigm shift: significant front-loading in preparedness, and breaking the firewall between development and intervention

100 Days Mission: What will it take?

Creating a library of prototype vaccines & establishing vaccine platforms

Getting **clinical trials and laboratory networks** ready for rapid evidence generation (incl. RWE)

Thinking out of the box: Open up for flexibility re clinical-regulatory strategies

Establishing **global manufacturing capacity** to make top-quality, safe, and effective new vaccines quickly

Identification and implementation of **appropriate reliable tools & technology** functioning in resource-poor settings

Developing **evidence generation strategies** incl. (pre-approved mockup) protocols **EVIDENCE**

(approval & use)

PRODUCT

(vaccine)

Sensitivity: Official Us

Platform Technology & Manufacturing Disease X: Vaccine Library concept

Virus Families

Disease X vaccine library for each virus family needs:

✓ Knowledge base and Materials

- "Tested and proven" rapid response platforms (e.g., mRNA, Adenoviral vector)
- State of the art immunogen design
- Preclinical/clinical testing for safety, immunogenicity and efficacy for a subset of viruses/designs → preclinical and clinical exemplar vaccines

0 ...

Multiple virus families will be targeted in CEPI 2.0:

- 2 pilots already selected (paramyxoviridae, arenaviridae)
- More to be selected

Evidence Generation: Vaccine Efficacy in the Context of Epidemic Preparedness

Objective	Endpoint
Shape the epidemic curve (end, shorten,) or the outbreak itself	 → Transmission → [Infection (= sterile immunity)]
Impact on public health (prevent mortality, morbidity, medical care system from decompensation,)	→ Disease

[note: theoretically, a vaccine effective against 'disease' can increase transmission (because people can be infectious but not sick)]!

Misleading terms in this context:

- \succ 'Asymptomatic disease' \rightarrow infection!
- > ['Symptomatic infection'] → disease!

(endpoint: infection+ / symptom-)

(endpoint: infection+ / symptom(s)+)

What is Meant by 'Vaccine Efficacy' ?

 A) ... <u>DISEASE</u> → to reduce BoD (Tool: classical controlled vaccine efficacy trials)

B) ... <u>TRANSMISSION</u> (≠ infection!) → required to stop further spreading / end an outbreak (Tool: household transmission trials, studies to address indirect parameters (viral load / shedding etc.), CHIM)

CEPI

= progression as well as protection (example: if you do not get infected you cannot develop symptoms etc. but a vaccine that protects against (severe) disease does not necessarily prevent against infection)

Testing Vaccines against <u>Disease</u> ...

- … Combining conventional & innovative clinical trial designs tailored for specific pathogens / outbreaks
 - ✓ Conventional randomised controlled trials with adaptive case-driven trial
 - ✓ Early versus delayed ring vaccination trials
 - ✓ Etc.

C E P

- ... using innovative clinical research concepts
 - ✓ For example, Burden of Disease (BoD) endpoints

Scoring reduction in Burden of Disease rather than disease y/n counting

Testing Vaccines against Infection / Transmission ...

• ... using Controlled Human Infection Models (CHIM):

• ... via innovative field vaccine efficacy trial concepts (incl. household transmission trials etc.)

Testing Vaccines against Disease, Infection and Transmission

FDA Definition [US FDA; August 2023]

- Real World Data: data relating to patient health status and/or the delivery of health care routinely collected from a variety of sources.
- Real World Evidence: clinical evidence about the usage and potential benefits or risks of a medical product derived from analysis of RWD
- Phase 4: "These trials are done after a drug has been shown to work and has been licenced." [https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/]
 Phase 4 trials aim to find out:
 - ✓ more about the side effects including the rarer side effects and safety of the drug
 - $\checkmark\,$ what the long-term risks and benefits are
 - \checkmark how well the drug works when it's used more widely for people not included in the phase 3 trial

New vaccine / CEPI's 100 DM: Phase 2 → Phase 4 (RWE) ?? ... will not work in every outbreak scenario! We cannot use conventional terms and approaches to do something (completely) new

Evidence Generation: <u>Before / After Licensure</u> ...

RCTs versus RWE

Evidence generation on:

- 1. <u>Vaccine Efficacy</u> (= stat. significant evidence on **PRESENCE** of vaccine efficacy):
 - ... via RCTs = conventional controlled vaccine efficacy trials
 - ... via protective immune response: CoP
 - ... via RWE (='Real World Effectiveness')
- 2. <u>Vaccine Safety</u> (= stat. significant evidence on **ABSENCE** of safety-related risks):
 - ... via RWE only

(RCTs can only clarify if a vaccine is unsafe → exclude a relatively high frequency of safety-relevant events)

11

Multiple Factors Determine Clinical Trial Design

Example: Nipah transmission / disease

CEPI

	iRCT	cRCT	2- stage	Ring	
Sample size					
Duration					
In-trial deaths					
Endpoint 1				A	I
Endpoint 2					
Score	15	17	18	70	
Ranking	4	3	2	1	
low medium high					

PREpare using Simulated Trial Optimisation (PRESTO): CEPI-funded programme at the Pandemic Science Institute, University of Oxford

12

Immunobridging: How can we identify a Correlate of **Protection (CoP)**?

FAQ. Monoclonal RCT Preclinical EPI study CHIM Phase 3 AB trial **Examples** Animal Model Do we have validated and robust assays? CHIM Natural Infection Infection What do we know about protective immunity infection/disease/ Vaccines Vaccination mortality? route. device Do we have samples with an adequate quality? Infection: Infection: Vaccine Survivor vs Non-Challenge Responder vs Non-Responder vs Non-Survivor Challenge Responder Responder Do we have adequate animal models? Which clinical trial design is adequate? Analysis: comprehensive, harmonized, standardized & informative & validated assays What data package would regulator accept? Immune Immune Immune Immune Immune Response Response Response Response Response Data Analysis, Stats, Predictive Modeling-Learning

Research Preparedness: Re-thinking Clinical Trial Networks

Innovative Tech & Tools in Clinical Trials

Site Access/Data Collection	Subject recruitment and	Local general logistics
How much direct access to sites	retention	How to solution for the logistical
and data will we have; in person or	How to identify the applicable	needs in case of closed borders?
remote? Internet connectivity	patients and to mitigate retention	Remote areas, how do we reach
impact?	problems?	them?
 Direct Data Capture, eDC Direct EMR access Secure document sharing IRT and Mobile IP review eCOA, ePRO CTMS eISF eTMF 	 eConsent with or without video Connected devices Decentralized Trial solutions/remote patient visits Patient facing communication platforms Iris scanners 	 Internet capabilities/Satellite uplink In country storage of clinical supplies and IP vs import Lab strategy central/local Tablet based data collection vs cloud based In time delivery to epidemic/pandemic hotspots

• Mobilization strategy

EMR = electronic med. Record; IRT = interactive response technology; IP = Internet Protocol; CTMS = clin. trial management system; ISF = investigator site file

Innovative Tech & Tools in Clinical Trials

Site Access/Data Collection

How much direct access to sites and data will we have; in person or remote? Internet connectivity impact?

Subject recruitment and retention

How to identify the applicable

Local general logistics

How to solution for the logistical needs in case of closed borders? Remote areas, how do we reach them?

bilities/Satellite

nical

- Direct Data C
- Direct

EMR =

system; IS

• Sec

Artificial Intelligence will catalyse this evolution

- Transforming start-up timelines
- Fostering diverse and patient-centric recruitment,
- Facilitating faster and meaningful data analysis (inc. safety signal detection
- Enabling more streamlined trial processes and faster decision-making

agement

Sensitivity: Official Use

Different outbreak scenarios may have different response timelines

X

Pathogen

(known vs unknown)

Scale

X

(small outbreak to pandemic)

Severity (mild to

severe)

X

Transmissibility

(low to high)

Wide range of response scenarios

Regulatory Pathways

CEPI 2.0: Is 100-days possible?

- Preparedness is key!
- Only specific circumstances
- Requires:
 - Maximal use of prior knowledge and platform data
 - Risk-based framework for immune correlates of protection
 - Assessment of anticipated benefit-risk and high-risk populations
- Case studies support the "reason to believe"

- immunobridging licensure
- utilising platform data and positive benefit risk for approval of strain adapted vaccines

Chikungunya - use of correlates of protection in the absence of efficacy data

C E P I