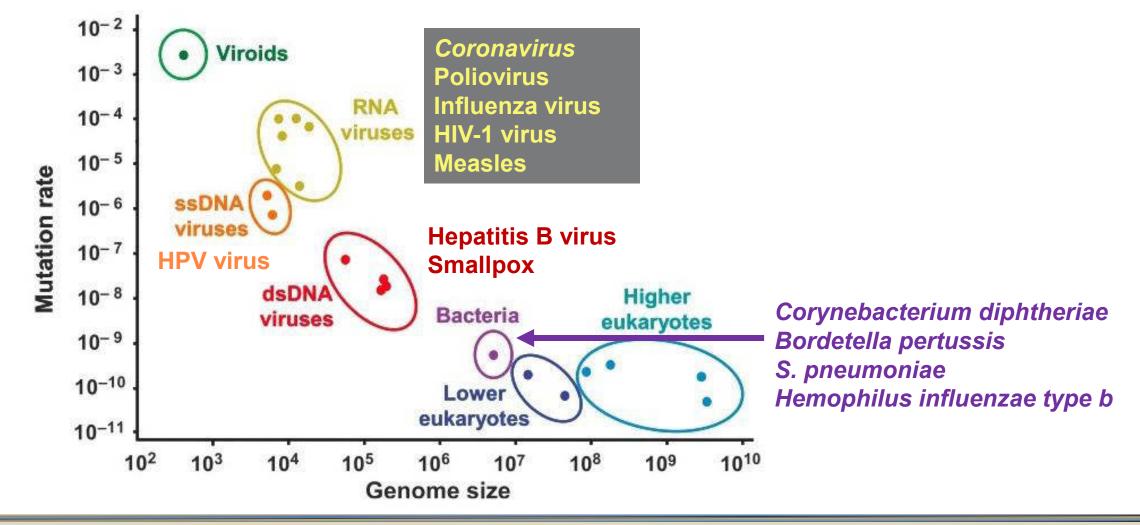


Update on combination vaccines and strain(s) adaptations in 2023

Edwin J. Asturias, MD

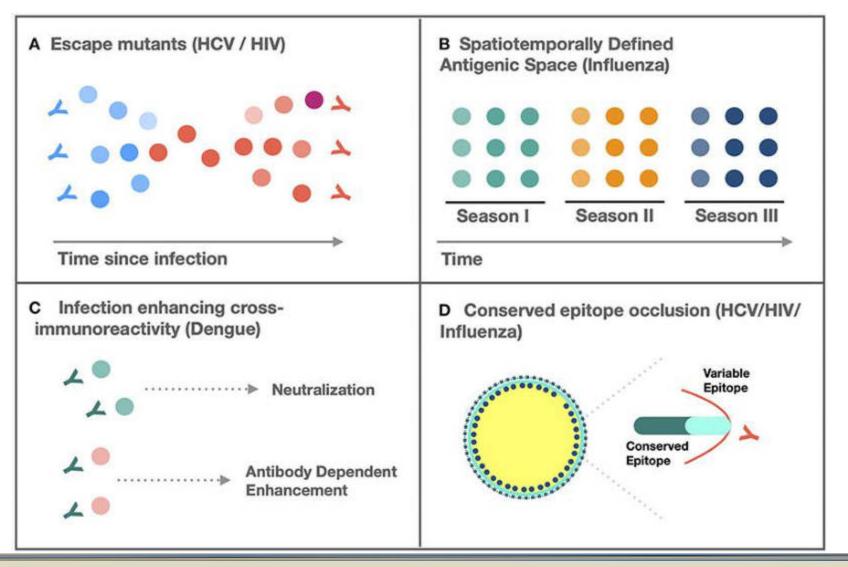
Professor of Pediatrics and Epidemiology UC School of Medicine and Colorado School of Public Health

Center for Global Health

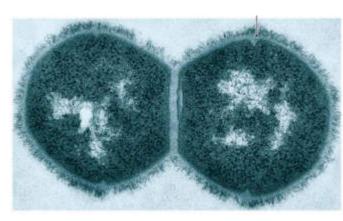

colorado school of public health

UNIVERSITY OF COLORADO | COLORADO STATE UNIVERSITY | UNIVERSITY OF NORTHERN COLORADO

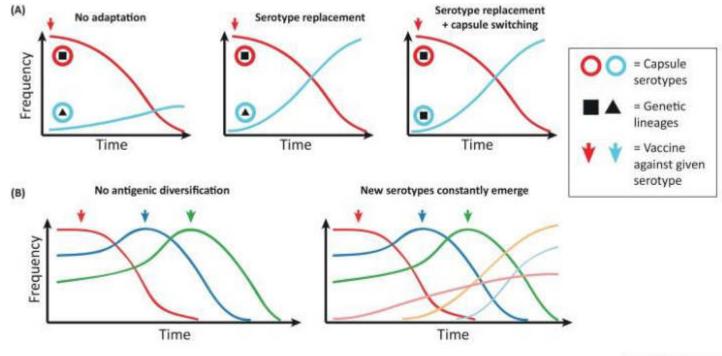
Objectives


- Biological, environmental, and population basis of variability in pathogens: mutation, adaptability, and transmission dynamics
- Understanding the population biology of pathogens (viruses or bacteria) matters including its role in selecting vaccine antigens and in assessing vaccine effectiveness.
- Basics of serotype replacement and its consequences on the vaccine strain adaptation.
- Critical elements of immunization schedule and the recent evolution of vaccines combinations
- Advantages and importance of combination vaccines

Relationship between mutation rate and genome size, with major human viral and bacterial pathogens

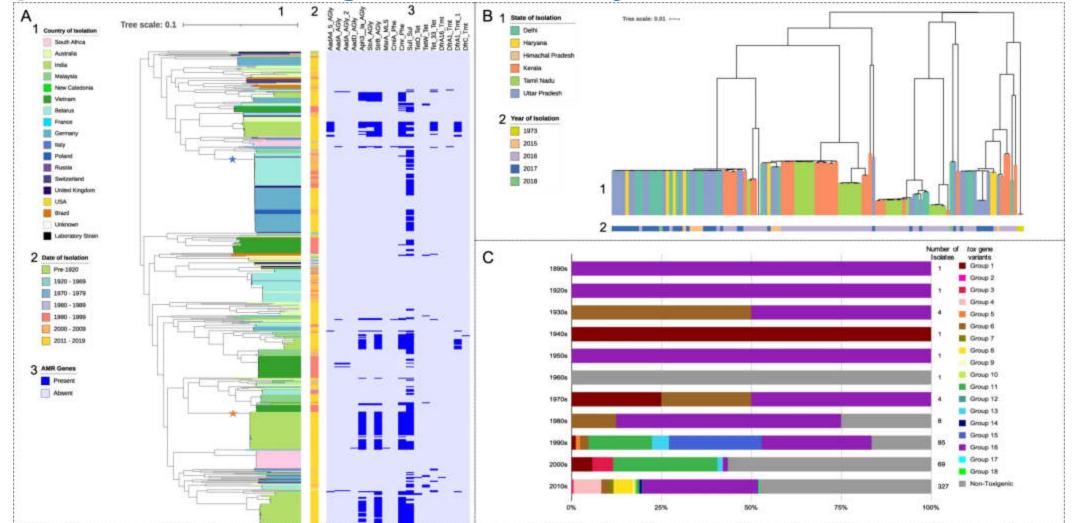

Adapted from San Juan R. et al https://doi.org/10.1128/JVI.00694-10

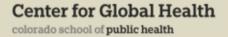
4 mechanisms of adaptive variation between viruses



Serotype replacement (bacteria)

 Emergence of less common serotypes circulating between hosts, or temporally across populations, for which immunity elicited by one serotype fails to protect against another


Streptococcus pneumoniae

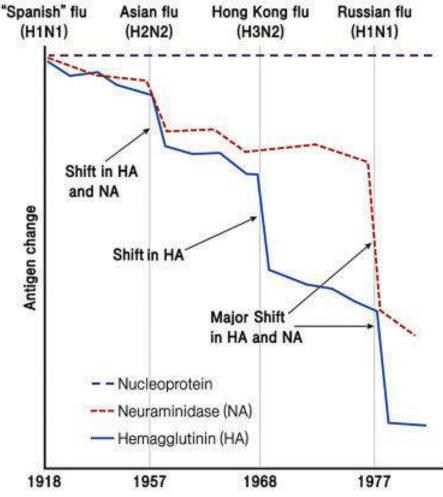

Trends in Microbiology

Global and Indian core gene phylogenies of Corynebacterium diphtheriae and tox gene variants by decade.

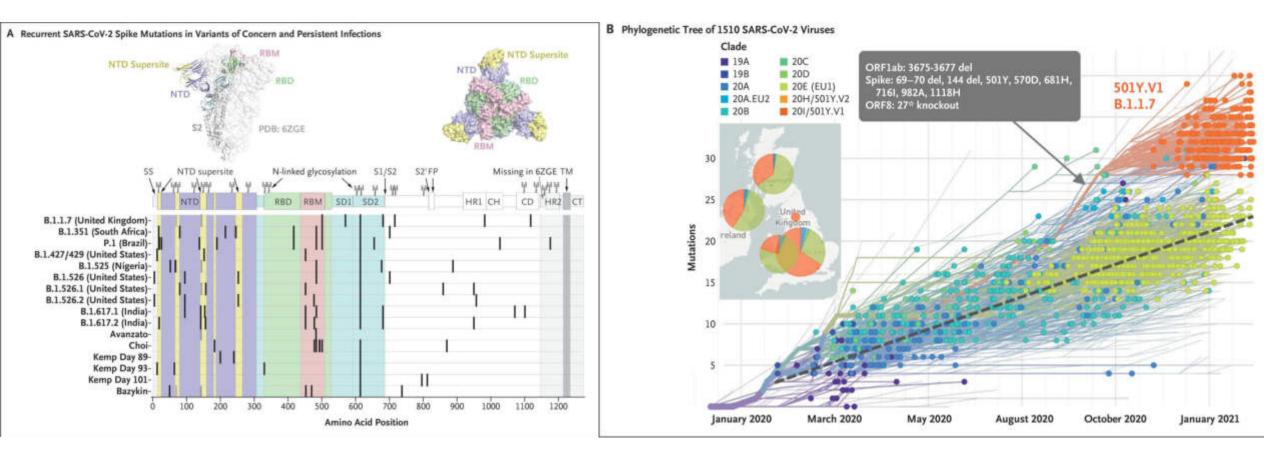
Will, R.C. *et al. Nat Commun* 12, 1500 (2021). https://doi.org/10.1038/s41467-021-21870-5

Antigenic variability (viruses)

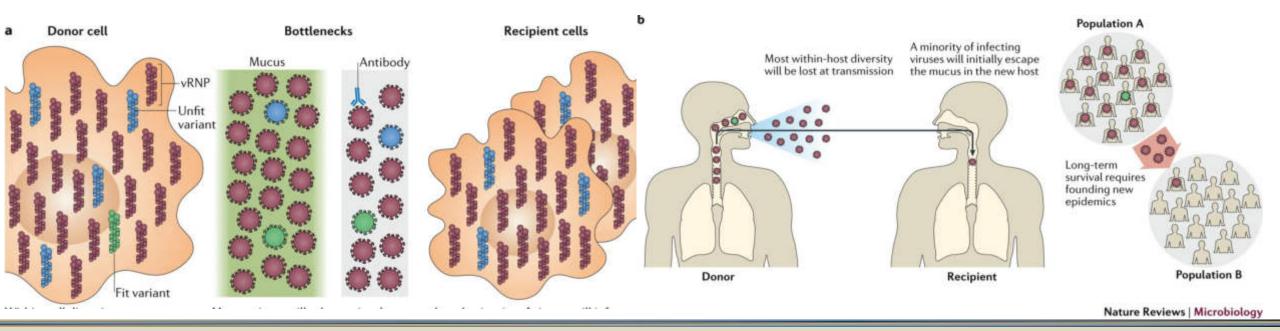

 Emergence of sequence distinct variants within a species, circulating between hosts, within hosts, or temporally across populations, for which adaptive immunity elicited by one strain fails to protect against another


Serotype replacement (bacteria)

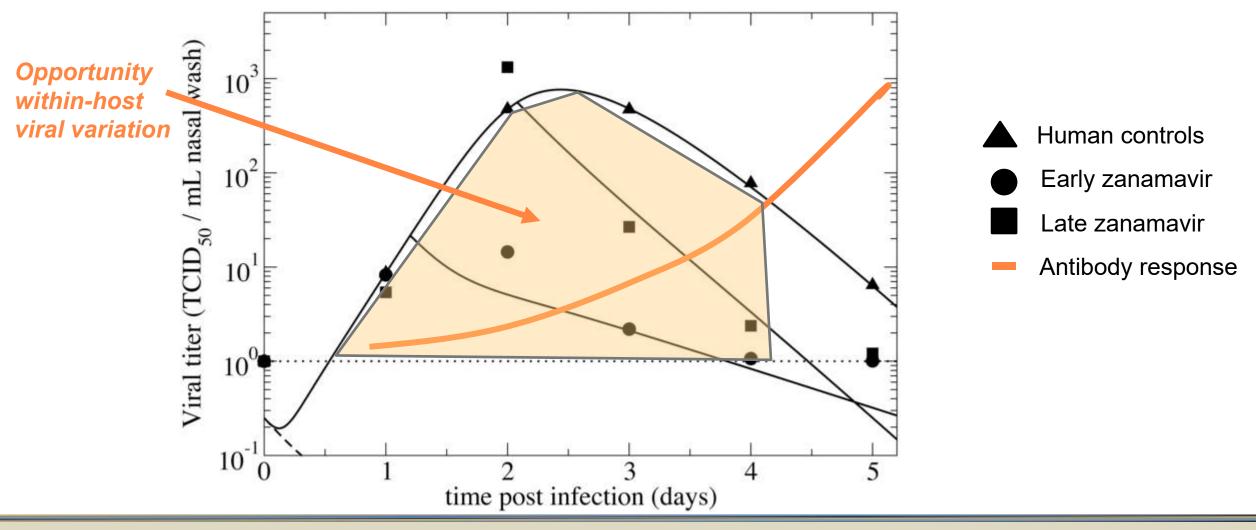
 Emergence of less common serotypes circulating between hosts, or temporally across populations, for which immunity elicited by one serotype fails to protect against another



Influenza strain variation and human timeline



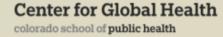
Evolution of SARS-CoV2 mutations and variants



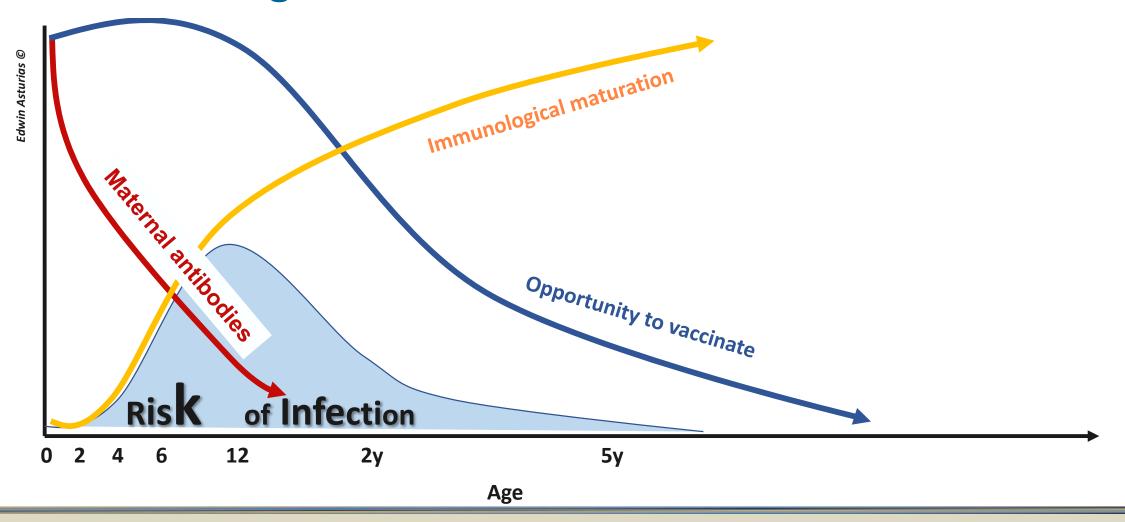
Intra-host viral mutation and selection

- Infected humans can produce 10¹² virions—infectious viral particles—during a respiratory virus infection
- High opportunity for mutation and selection if an infection is persistent or prolonged

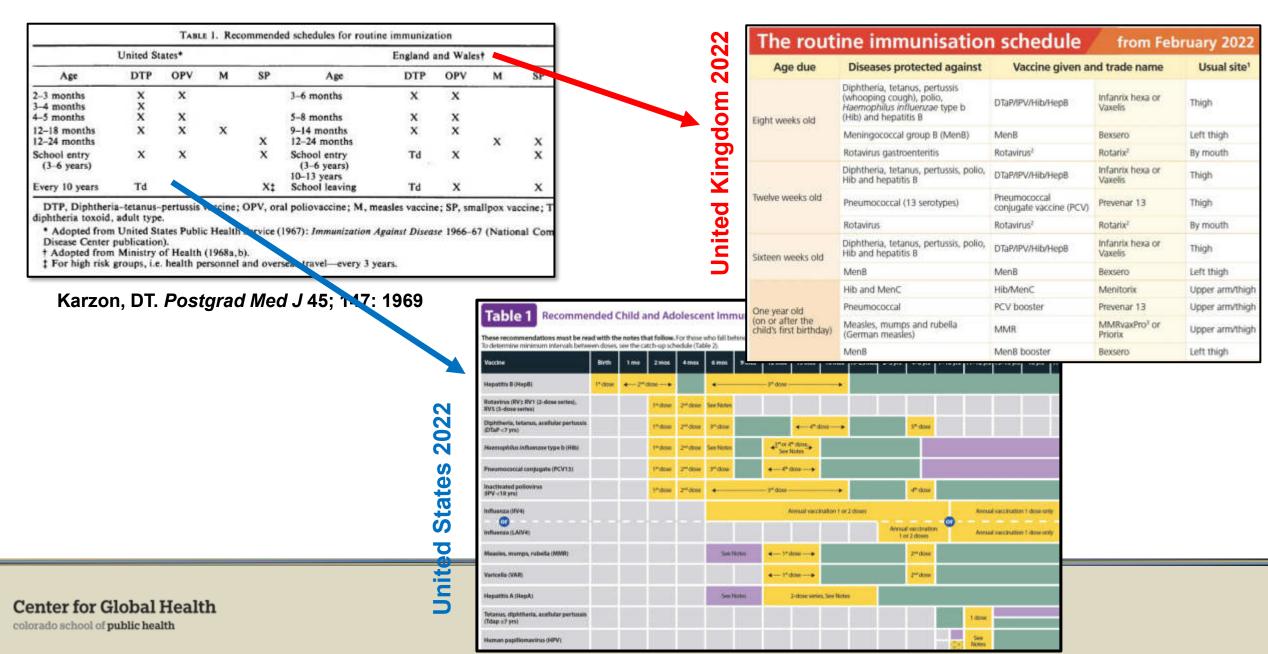
Course of influenza virus infections with and without the NI zanamivir given intranasally to human volunteers



Adapted from Baccam P et al. 2006 https://doi.org/10.1128/JVI.01623-05

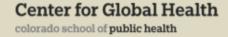

colorado school of **public health**

Center for Global Health


What strain variability or serotype replacement has to do with combination vaccines?

Optimal immunization schedule provides protection at the time of greatest risk

Child Immunization schedules have evolved: USA and UK


Vaccine Doses and Injections Required for Children Birth to 6 Years of age; United States 2023

Antigen	Doses	Antigen	Doses
Diphtheria	5	Measles	2
Tetanus	5	Mumps	2
Pertussis	5	Rubella	2
Hib	3-4	Varicella	2
Polio (IPV-3) x 4	12	Hepatitis A	2
Hepatitis B	3-4	Influenza (4) x 5	20
PCV-13 x 4	52	COVID-19	2-3
Rotavirus (5) x 3	15	Total antigens	132-135

Minimal Injections = 20

Reasons for Combining Vaccines

- Reduce injections- less trauma and pain
- Simplify immunization delivery increase compliance
- Integrate multiple antigens from different diseases or from variants of the same pathogen
- Increase acceptance of vaccines?

What is a combination vaccine?

 Vaccine designed to protect against two or more diseases or against one disease caused by different strains or serotypes

Multiple Antigens for Distinct Pathogens	Multiple Antigens against Same Pathogen
DTP TdaP	PCV vaccines (13, 15, 20 serotypes) PPV (23 serotypes)
DTaP-HBV-Hib DTaP-HBV-Hib-IPV DTwP-HBV-Hib-IPV	Influenza (2 A + 2 B lineages)
MR MMR MMRV	COVID-19 (Wuhan + Omicron)
НерА-НерВ	Dengue (4 serotypes)

Kalies H, et al. *Pediatr Infect Dis J* 2006;25:507-12. Marshall GS, et al. *Pediatr Infect Dis J* 2007;26:496-500.

FDA-licensed combination vaccines for different VPDs

Vaccine ^(b)	Trade name (year licensed)	Age range	Routinely recommended ages				
НерА-НерВ	Twinrix (2001)	≥18 years	3 doses on a schedule of 0, 1, and 6 months				
DTaP-HepB-IPV	Pediarix (2002)	6 weeks-6 years	3-dose series at 2, 4, and 6 months of age				
MMRV	MRV ProQuad (2005)		2 doses, the first at 12-15 months, the second at 4-6 years				
DTaP-IPV	Kinrix (2008)	4-6 years	5th dose of DTaP and fourth dose of IPV				
DTaP-IPV/Hib	Pentacel (2008)	6 weeks-4 years	4-dose schedule at 2, 4, 6, and 15-18 months of age				
Hib-MenCY	MenHibrix (2012)	6 weeks-18 months	4-dose schedule at 2, 4, 6, and 12-15 months of age ^(c)				
DTaP-IPV	Quadracel (2015)	4-6 years	5th dose of DTaP and fourth or fifth dose of IPV				
DTaP-IPV-Hib-HepB	Vaxelis (2018)	6 weeks – 4 years	3-dose series at 2, 4, and 6 months of age				

https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/timing.html#ref-82

Recommended Child and Adolescent Immunization Schedule for ages

18 years or younger, United States, 2023

Vaccine	Birth	1 mo	2 mos	4 mos	6 mos	9 mos	12 mos 1	5 mos 18 mo	s 19-23 m	os 2-3 yrs	4-6 yrs	7-10 yrs	11-12 yrs	13-15 yrs	16 yrs	17-18 yr
Hepatitis B (HepB)	$t^{\alpha} dose$	4	lose•		•		- 3 st dose									
Rotavirus (RV): RV1 (2-dose series), RV5 (3-dose series)			1*dose	2 nd dose	See Note					10						
Diphtheria, tetanus, acellular pertussis (DTaP <7 yrs)			1 ⁴ dose	2 st dose	3ª dose		•	— d ^a dose —	•		5ª dose					
Haemophilus influenzae type b (Hib)			1 ^e dose	2 ⁿⁱ dose	See Note		def de Nobel	ese es								
Piseumococcal conjugate (PCV13, PCV15)			1º doie	2 ⁿ⁴ dose	3 rd dose		4 4 [∞] dose									
Inactivated poliovirus (IPV <18 yrs)			1ª dose	2 nd dose	•						4ª dose					See Note
COVID-19 (1vCOV-mRNA, 2vCOV-mRNA, 1vCOV-aPS)								2-or	3-dose prim	ary series at	d booster (See Notes)				
influenza (IIV4) or influenza (LAIV4)		-					An	wal vaccination	l or 2 doses	An	nual vaccin 1 or 2 dose			al vaccinatio ual vaccinatio		
Measles, mumps, rubella (MMR)					500	Notes	<t≠dose< td=""><td>••</td><td></td><td></td><td>Z™ dose</td><td></td><td></td><td></td><td></td><td></td></t≠dose<>	••			Z™ dose					
Varicella (VAR)							< t≠dose				2 nd dose					
Hepatitis A (HepA)					500	Notes	2-6	ose seriev, See No	ites							
Tetanus, diphtheria, acellular pertussis Tdap ≥7 yrs)													1 dose	5		
Human papillomavirus (HPV)													See Notes			
Meningococcal (MenACWY-D 29 mos, MenACWY-CRM 22 mos, MenACWY-TT 22years)							Se	e Notes					1ª dose		2 nd dose	
Meningococcal B MenB-4C, MenB-FHbp)														See No	tes.	
Pneumococcal polysaccharide (PPSV23)													See Notes	5		
Dengue (DEN4CYD; 9-16 yrs)				1						1				itive in ende mas (See No		

Vaccine	Abbreviation(s)	Trade name(s)
COVID-19	1vCOV-mRNA	Comimaty*/Pfizer- BioNTech COVID-19 Vaccine
		SPIKEVAX*/Moderna COVID-19 Vaccine
	2vCOV-mRNA	Pfizer-BioNTech COVID-19 Vaccine, Bivalent
		Moderna COVID-19 Vaccine, Bivalent
	1vCOV-aPS	Novavax COVID-19 Vaccine
Dengue vaccine	DEN4CYD	Dengvaxia*
Diphtheria, tetanus, and acellular pertussis vaccine	DTaP	Daptacel* Infanrix*
Diphtheria. tetanus vaccine	DT	No trade name
Haemophilus influenzae type b vaccine	Hib (PRP-T)	ActHIB* Hiberix*
	Hib (PRP-OMP)	PedvaxHIB*
Hepatitis A vaccine	НерА	Havrix* Vaqta*
Hepatitis 8 vaccine	НерВ	Engerix-B* Recombivax HB*
Human papillomavirus vaccine	HPV	Gardasil 9*
Influenza vaccine (inactivated)	IIV4	Multiple
Influenza vaccine (live, attenuated)	LAIV4	FluMist ^e Quadrivalent
Measles, mumps, and rubella vaccine	MMR	M-M-R II* Priorix*
Meningococcal serogroups A, C, W, Y vaccine	MenACWY-D	Menactra*
	MenACWY-CRM	Menveo*
	MenACWY-TT	MenQuadfi"
Meningococcal serogroup B vaccine	MenB-4C	Bexsero*
Pneumococcal conjugate vaccine	PCV13	Prevnar 13*
	PCV15	Vaxneuvance TH
Pneumococcal polysaccharide vaccine	PPSV23	Pneumovax 23*
Poliovirus vaccine (inactivated)	IPV	IPOL*
Rotavirus vaccine	RV1 BV5	Rotarix*
Tetanus, diphtheria, and acellular pertussis vaccine	Tdap	Adacel* Boostrix*
Tetanus and diphtheria vaccine	Td	Tenivac" Tdvax™
Varicella vaccine	VAR	Varivax*
Combination vaccines (use combination vaccines instead of sepan	ate injections when app	propriate)
DTaP, hepatitis B, and inactivated poliovirus vaccine	DTaP-Hep8-IPV	Pediarix*
DTaP, inactivated poliovirus, and Haemophilus influenzae type b vaccine	DTaP-IPV/Hib	Pentacel*
DTaP and inactivated poliovirus vaccine	DTaP-IPV	Kinrix* Quadracel*
	DTaP-IPV-Hib-	Vaxelis*
DTaP, inactivated poliovirus, Haemophilus influenzae type b, and hepatitis 8 vaccine	HepB	

Potential Problems With Combining Vaccines

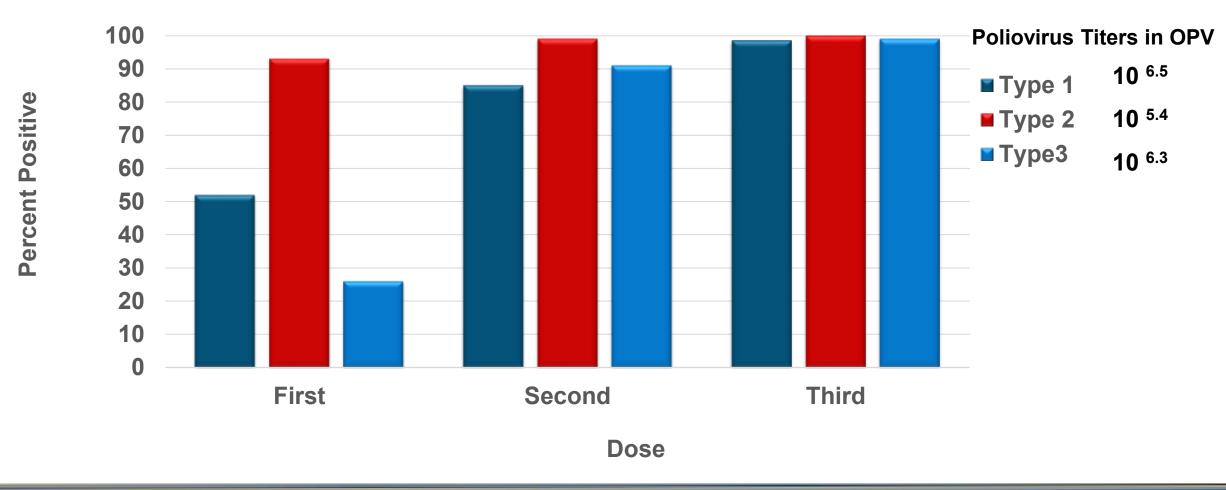
- 1) Chemical interactions
- 2) Physical interactions
- 3) Competition between antigens
- 4) Immune alterations
- 5) Patent issues
- 6) Price (more expensive)

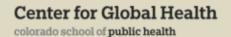
Hexavalent vaccines (DTaP vs DTwP-IPV-HepB-Hib

 DTwP interference with IPV chemistry prevented the development of a hexavalent vaccine for most of the world

DTwP-IPV-HepB liquid

+

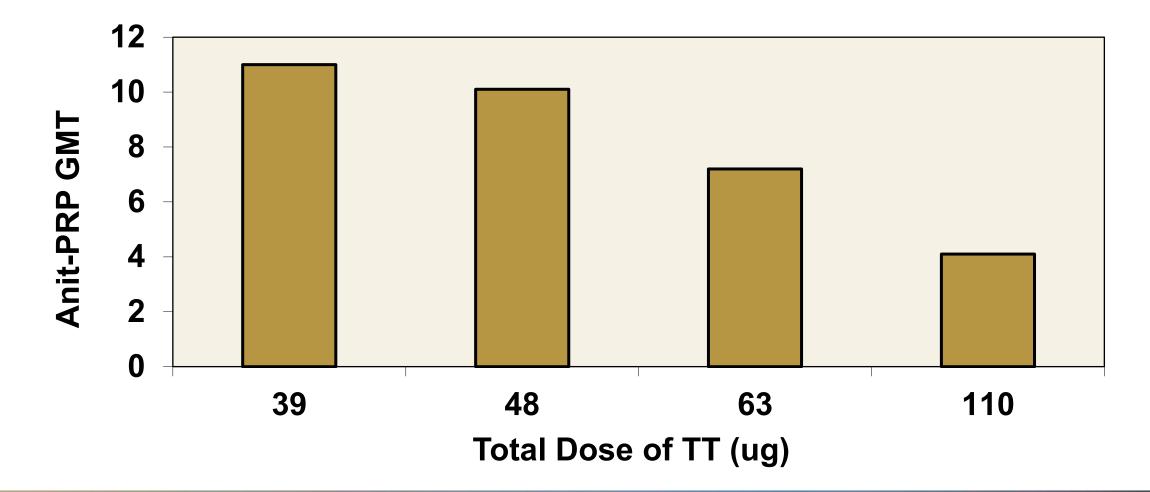

Hib lyophilized vial


Serum Institute India Hexa vaccine

Each dose of 0.5 ml contains Diphtheria Toxoid $\leq 25 \text{ Lf} (\geq 30 \text{ IU})$ Tetanus Toxoid $\geq 5 \text{ Lf} (\geq 40 \text{ IU})$ B. pertussis (whole cell) $\leq 16 \text{ OU} (\geq 4 \text{ IU})$ HBsAg (rDNA) $\geq 10 \text{ mcg}$ Purified Capsular Polysaccharide (PRP) 10 mcg Tetanus Toxoid (carrier protein) 19 to 33 mcg Adsorbed onto Aluminium Phosphate, Al+++ ≤ 1.25 mg Preservative: Thiomersal 0.005%

Cumulative Seroresponses to Trivalent Oral Poliovirus Vaccine

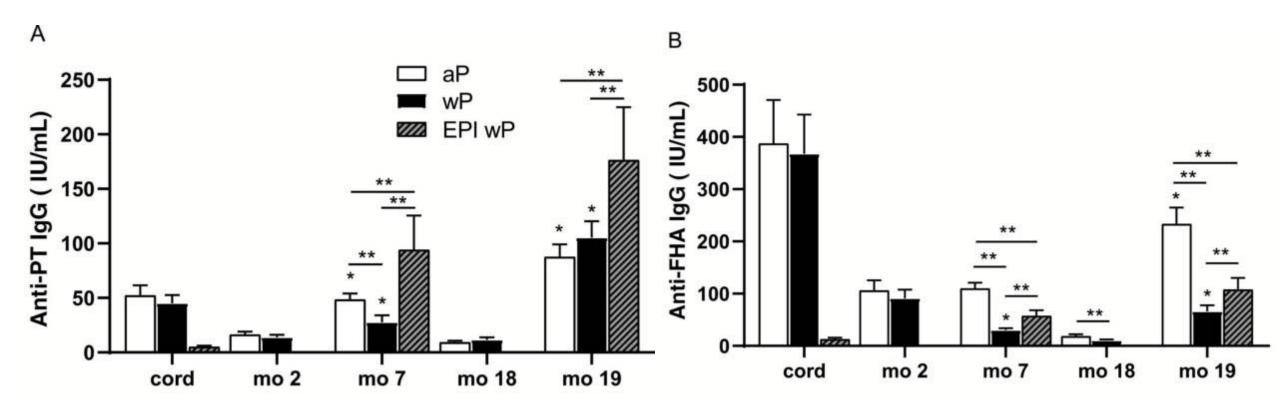

Source: Cohen-Abbo. PIDJ 1995;14:103.


Tetanus Toxoid-containing Vaccines Administered Simultaneously to Children at 2, 4 and 6 Months of Age

Israel and Finland Studies

A:	DTP/PRP-T (Hib)	Pnc-T
B:	DTP/PRP-T (Hib)	Pnc-D

Carrier Induced Suppression: Decreased Response to PRP with Increasing Total Dose of TT Administered

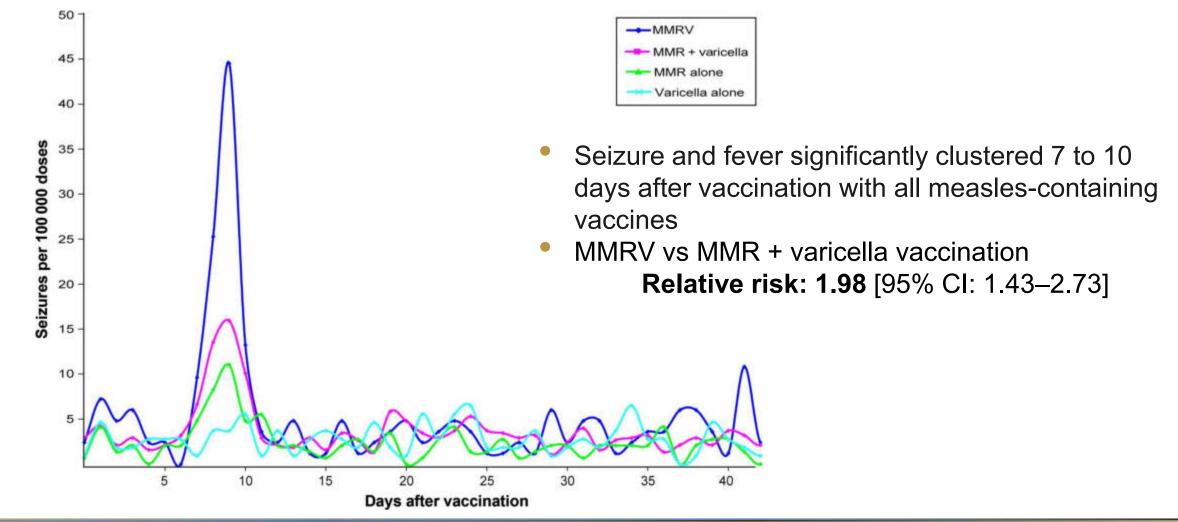


Center for Global Health

colorado school of public health

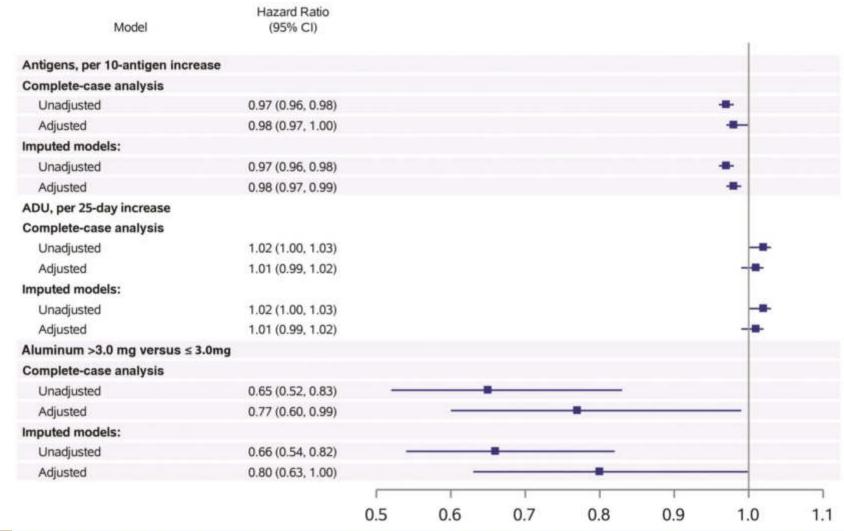
Dagan, et al. Infect Immun 1998;66:2093

Geometric mean concentrations of anti-PT; B), anti-FHA IgG in the acellular pertussis (aP), whole-cell pertussis (wP), and EPI wP groups at birth (cord) and months 2, 7, 18, and 19.


Maternal Tdap inhibited more pertussis-specific responses in wP vs. aP-vaccinated infants

Seroconversion after 3 doses of DTaP/IPV/Hib at 2, 3 and 4 months of age in 5-month old infants born to mothers given Boostrix-IPV, Repevax or no DTaP/IPV in pregnancy in UK

		Boostrix-I	PV	Repevax	None		
Poliovirus serotype	n/N	% seroconversion (95 % CI)	n/N	% seroconversion (95 % Cl)	n/N	% seroconversion (95 % CI)	
1	10/52	19.2 (9.6–32.5)	12/53	22.6 (12.3–36.2)	17/23	73.9 (51.6–89.8)****	
2	11/54	20.4 (10.6–33.5)	10/56	17.9 (8.9–30.4)	17/24	70.8 (48.9–87.4)****	
3	18/50	36.0 (22.9–50.8)	24/54	44.4 (30.9–58.6)	22/24	91.7 (73.0–99.0) ^{***}	


Grassly NC, et al. Vaccine. 2023 Feb 10;41(7):1299-1302. doi: 10.1016/j.vaccine.2023.01.035.

Postvaccination seizures among 12-23-month-olds according to vaccine received: VSD study population, USA 2000–2008

Klein NP, et al. Pediatrics. 2010;126(1):e1-8. doi: 10.1542/peds.2010-0665.

Are multiple antigen schedules safe for children? Risk of developing T1DM in 584,171children in the USA 2004-2014

Avg 263 antigens

Cumulative Ag exposure **not** associated with T1DM

 Cumulative aluminum exposure >3.00 mg was inversely associated with T1DM

Glanz JM, et al Pediatrics. 2021;148(6):e2021051910. doi: 10.1542/peds.2021-051910.

Complexities of combination vaccines

- Combination products may be more expensive than separate vaccines
- But may be more cost effective if the costs of extra injections, health care provider time, and additional handling and storage are taken into consideration
- May result in administration of extra, unneeded doses of antigens (e.g., a booster dose of pertussis-containing vaccine may also provide extra, D and T)
- More difficult to determine which component of a combination vaccine is responsible for an allergic reaction or AEFI.

- Pathogens evolve given the opportunity at the host and population level (community and individual protection gaps)
- Combination vaccines can optimize delivery and compliance with immunization schedules and provide better coverage
- Combination vaccines allow filling the gaps of immunity against evolving variants, serotypes and multiple pathogens
- **Recognize complexity of inclusion** of combination vaccines to ensure immunity, safety and cost-effectiveness for the population