

Update on Vaccine adjuvants

Prof. Arnaud Didierlaurent

Center of Vaccinology Faculty of Medicine, Geneva

ARVAC 2023

FACULTÉ DE MÉDECINE

- Provide an update on licensed adjuvanted vaccines
- Examples of clinical benefits, specifically on the quality of the immune response
- Adjuvant and mRNA vaccines comparison

We use adjuvants for a purpose: to improve the immune response to vaccines

Selection based on what provides optimal outcomes in terms of safety and immunogenicity

Figure adapted from Di Pasquale A et al. *Vaccines*. 2015;3:320-343.

Adjuvants come in different flavors and enigmatic names....

Adjuvants in licensed vaccines..before and after COVID-19

Shi, Vaccine, 2019; Pulendran et al. Nature Reviews Drug Discovery, 2021

Clinical benefits of adjuvanted vaccines

Adjuvant: expected impact on vaccine immune response

MF59 induces higher antibody responses in children (Seasonal Influenza vaccine)

Vesikari et al, NEJM 2011

Enhanced efficacy as compared to non adjuvanted vaccines

N= 4,707, 2007 – 2009 Seasons

¹ Statistically significant result.

Vesikari et al, NEJM 2011

Emulsions can broaden antibody repertoire and promote affinity maturation (H5N1/AS03 or MF59)

Increased Ab repertoire

Similar data with MF59 (H5N1)

Khurana et al. Sci Transl Med. 2011; Npj Vaccine, 2018

The recombinant Zoster vaccine (VZV gE+ AS01) induces a durable immune responses in older individuals¹

2210,9 2054.2 50000 2000 40000 494.6 Median frequency 1500 (log₁₀ EU) 30000 968.2 1000 903. GMC 20000 523,2 180.2500 10000 110,995.8 0 PRE (M0) PRE (M0) POST (M3) POST (M14) POST (M38) 50-59 YOA 60-69 YOA ≥70 YOA (N=63) (N=50) (N=61)

gE-specific CD4[2+] T cells

40000

gE Antibodies

• 91% protection in vaccinees ≥80 years

50-59 YOA

Vaccine efficacy sustained for at least 10-year follow-up²

60-69 YOA

POST (M3)

Immunogenicity and efficacy in immunocompromised patients

POST (M14)

POST (M38)

≥70 YOA

¹Cunningham, J Infect Dis. 2018; ²Strezova A; Open Forum Infect Dis 2022

Added value of AS01 is less obvious in the context of the RSV vaccine

Phase II Older adults (60-80 YOA) N=100/group 30 μg Plain 60 μg Plain 120 μg Plain

UNIVERSITÉ

30 μg AS01_E
 60 μg AS01_E
 120 μg AS01_E
 30 μg AS01_B
 60 μg AS01_B
 120 μg AS01_B

No dose sparing effect

Due to higher pre-existing immunity or intrinsic immunogenicity of the antigen?

Observed Benefits of Adjuvants in Candidate or Licensed Adjuvanted Vaccines

- Efficacy demonstrated for <u>different antigen types</u> Split (influenza), parasite-derived (malaria), viral glycoprotein (herpes zoster), viral particles (HPV)...
- Increase magnitude of the immune response but also <u>quality</u>: antibody breadth, crossreactive T-cells and increased functionality of antibodies
- Benefits across the <u>entire age spectrum</u> (6-month-old infants to >80-year-old-adults) and in vulnerable populations (immunocompromsied) with acceptable safety outcomes

- Fail to increase immunogenicity of conjugate vaccines
- Does not generally induce CD8+ T cell response
- The magnitude and persistence of the response **depends also on the antigen**
- Are more reactogenic than others vaccines, in particular in presence of pre-existing immunity- this has led to discontinuation of vaccine candidates.

Learnings on Safety

- pIMDs (potential immune-mediated disorders) are specifically monitored in clinical studies and in post-marketing surveillance
- Initial concerns of increased risk of inflammatory/autoimmune disease exacerbations is not supported by current data.
- Narcolepsy and AS03-adjuvanted H1N1 Flu vaccine: no evidence that the adjuvant is causing the issue (but may have contributed to increase an existing antigen-driven mimicry/immunopathological effect)
- GBS and adjuvanted Zoster vaccine (US CDC)-yet to be confirmed

Adjuvanted vaccines and "innate imprinting"- potential non-specific effect?

Change in transcription factor accessibility

H5N1
H5N1+AS03

В	Biological insights				
Vaccine	Gene accessibility	Trained immunity			
TIV H5N1+AS03	↓ AP-1	Reduction of inflammatory cytokine production (IL-1β, TNF-α, G-CSF)			
H5N1+AS03	▲ IRF8,9,7 STAT1,2	Induction IFN response (antiviral program)			
H5N1	↓ IRF8,9,7 STAT1,2	Reduction IFN response (antiviral program)			

- Evidence that vaccination with adjuvants could induce a transient change in the responsiveness of innate cells to various stimuli
- Clinical relevance remains unclear but may contribute to non-specific effect/reactogenicity

Wimmers, Cell, 2021 ; Rescigno, Cell, 2021

How do adjuvanted vaccines work and how to improve current adjuvants?

FACULTÉ DE MÉDECINE

Adjuvants induce a Transient Stimulation of Innate Immunity, Which Is Required for the Adjuvant Effect

Didierlaurent AM, et al. *J Immunol.* 2014;193(4):1920-1930; Detienne S, et al. *Scientific Reports.* 2016;6:39475; Didierlaurent AM, et al. *Expert Rev Vac.* 2017;16(1):55-63; Coccia et al. *npj Vaccines,* 2017

Key innate pathways involved in adaptive response to adjuvanted vaccines

- **Synergy** between innate pathways ٠ (TLR/Stress pathways)
- Interferon response (NK cell ٠ activation)
- Monocyte ٠

- **Increased inflammation** is associated with more systemic reactions
- Higher susceptibility to interferon associated with more reactogencity?
 - No specific predictive biomarkers of reactogenicity

Perspectives

- Development of small synthetic molecules to modulate immune response (Th17,therapeutic vaccines) or improve reactogenicity profile
- Emerging data suggest non-specific effect of adjuvanted vaccines through imprinting of the immune system (clinically relevant?)
- Several entities are and will be able to supply GMP-grade adjuvants (incl. open access)-> acceleration of adjuvanted vaccine development
- Head-to-head comparison with other platforms (e.g. mRNA) are needed

Comparison with mRNA

Adjuvanted versus mRNA-based vaccines

1st vaccine	2nd vaccine	antibodies		T cells		Adverse events	
		lgG	neutralizing	CD4	CD8	1st	2nd
NVX-Cov2373	NVX-CoV2373	++	+++	++	+/-	Û	矿
BNT162b2	BNT162b2	+++	+++	++	++	Û	ប៌បិ
mRNA-1273	mRNA-1273	+++	+++	+++	++	Û	ÛÛ
		<	Ja .	O			

Hielscher, J. Clin Virol, 2022

Comparison on boosting with adjuvanted versus mRNA-based vaccines

Stuart, Shaw, Liu, The Lancet, 2022

Comparison on boosting with adjuvanted versus mRNA-based vaccines

mRNA versus adjuvants: COVID-19 data on booster (3rd dose after mRNA primary series)

D15

D0 D15

D0 D15

D0

mRNA versus adjuvants: pro and cons...

mRNA

• Strong antibody response but limited persistence and breadth?

Immuno

- CD4 and CD8 response demonstrated but
 - Antigen-specific?
 - Sustained CD4 T cell response?
- Millions of doses administered with good safety profile but only 2 years of experience....

Safety

- High reacto- suitable for non COVID vaccines?
- Not possible to distangle immune activation from antigen level (risk of low immuno/high reacto)
- Rapid, full synthetic

Manufacturing

easy to change target antigen
Stability at RT?

Adjuvants

- Strong antibody response and evidence of increased breadth
- Only CD4 T cells response
 - Shown across many different antigens
 - Persistence demonstrated
- Established safety across different vaccine antigens
- High/medium reacto-tunable
- Possible to reduce doses while keeping the same amount of antigen
- Could be complex
- Usually excellent stability

Key points

- There are more several licensed adjuvanted vaccines than 5 years ago
- Clinical benefits of adjuvanted vaccines are demonstrated and emerging data show that adjuvants improve the quality of the immune response
- Head-to-head comparison of adjuvanted and mRNA-based vaccine are urgently needed to assess their respective potential/complementarity

Thank you

Pr. Arnaud Didierlaurent

FACULTÉ DE MÉDECINE